K4, 4 - e has no finite planar cover
نویسنده
چکیده
A graph G has a planar cover if there exists a planar graph H , and a homomorphism φ : H → G that maps the neighbours of each vertex bijectively. Each graph that has an embedding in the projective plane also has a finite planar cover. Negami conjectured the converse in 1988. This conjecture holds as long as no minor-minimal non-projective graph has a finite planar cover. From the list there remain only two cases not solved yet—the graphs K 4,4 − e and K1,2,2,2. We prove the non-existence of a finite planar cover of K4,4−e.
منابع مشابه
Finite planar emulators for K4, 5-4K2 and K1, 2, 2, 2 and Fellows' Conjecture
In 1988 Fellows conjectured that if a finite, connected graph admits a finite planar emulator, then it admits a finite planar cover. We construct a finite planar emulator for K4,5 − 4K2. Archdeacon [Dan Archdeacon, Two graphswithout planar covers, J. Graph Theory, 41 (4) (2002) 318–326] showed that K4,5−4K2 does not admit a finite planar cover; thusK4,5−4K2 provides a counterexample to Fellows’...
متن کاملPacking and Covering Triangles in K 4-free Planar Graphs
We show that every K4-free planar graph with at most ν edge-disjoint triangles contains a set of at most 32ν edges whose removal makes the graph triangle-free. Moreover, equality is attained only when G is the edge-disjoint union of 5-wheels plus possibly some edges that are not in triangles. We also show that the same statement is true if instead of planar graphs we consider the class of graph...
متن کاملm at h . C O ] 1 9 D ec 2 00 8 FINITE PLANAR EMULATORS FOR K 4 , 5 − 4 K
In 1988 M. Fellows conjectured that if a finite, connected graph admits a finite planar emulator, then it admits a finite planar cover. We construct a finite planar emulator for K4,5 − 4K2. D. Archdeacon [2] showed that K4,5 − 4K2 does not admit a finite planar cover; thus K4,5 − 4K2 provides a counterexample to Fellows’ Conjecture. It is known that S. Negami’s Planar Cover Conjecture is true i...
متن کاملThe planar Ramsey number PR(K4-e, K5)
The planar Ramsey number PR (H1, H2) is the smallest integer n such that any planar graph on n vertices contains a copy of H1 or its complement contains a copy of H2. It is known that the Ramsey number R(K4 − e, K6) = 21, and the planar Ramsey numbers PR(K4 − e, Kl) for l ≤ 5 are known. In this paper, we give the lower bounds on PR (K4 − e, Kl) and determine the exact value of PR (K4 − e, K6).
متن کاملYo ’ Av Rieck and Yasushi Yamashita
In 1988 M. Fellows conjectured that if a finite, connected graph admits a finite planar emulator, then it admits a finite planar cover. We construct a finite planar emulator for K4,5 − 4K2. D. Archdeacon [2] showed that K4,5 − 4K2 does not admit a finite planar cover; thus K4,5 − 4K2 provides a counterexample to Fellows’ Conjecture. It is known that S. Negami’s Planar Cover Conjecture is true i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Graph Theory
دوره 27 شماره
صفحات -
تاریخ انتشار 1998